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Executive summary

This Deliverable reports the advancements in the development and in the application of the monitoring instru-
ments for Community Networks (CNs). In Deliverable D2.5 [1] we described a set of metrics, together with
the source code needed for their computation, which let someone “feel the pulse” of a CN and understand their
level of decentralization and the possible presence of single points of failure. Such metrics are applicable to
the network topology graph of a CN, but also to the social network graph, which can be derived through the
analysis of communication instruments used by the community such as mailing lists. With these instruments,
it is possible to perform a multi-layer analysis and identify those CN nodes that are critical for the robust op-
eration of the network as well as those people who are key for the community to thrive. Since people own
nodes, the two factors are strongly correlated and must be analysed together. It is key to note that robustness
is a key factor for the sustainable growth of a CN. While the other tasks in WP2 focus on defining, motivating,
and embedding by design the CN sustainability, these are largely offline processes. This task complement this
vision with tools that make it possible to continuously (on-line) monitor the evolution of the CN, in order to
prevent failures which hinder the growth of a network.
This deliverable further develops this theme in two directions. The first one is the development of new metrics
and new source code. An important part of this process is the realization of scientific publications for delving
deeper into the methodology and developing it further according to the feedback from the academic and research
community (in Chapter 2). The analysis of two running networks suggests that CNs, albeit being part of the
family of “spatial networks”, behave in a different way depending on external conditions. In spatial networks,
contrary to other networks such as social networks, the nodes have a position in space. Models of spatial
networks typically tend to generate networks with a strong spatial hierarchy, where the geographical areas
under the “influence” of each node are disjoint. In our experimental study, one of the analysed CN confirms
this, while another exhibits a different pattern. We consider this an important result since it suggests that
individual CNs may bear distinct features that distinguish them from other similar networks.
The second direction of progress over D2.5 has dealt with the integration of the aforementioned metrics with
existing software monitoring tools of CNs. In this regard, our work has focused on two currently used platforms,
NodeShot and OpenWISP2. The two pieces of software have been created by members of the ninux.org network
and by a community of people including a few developers from ninux, respectively. Whereas NodeShot is used
only in the ninux community, OpenWISP2 is of broader interest; thus, we have focused our developments on
this platform, which we detail in Chapter 3.
The deliverable details the contribution of Task 2.4 on netCommons goals, discussing the impact on ninux and
other CNs. There is an ongoing discussion with ninux members to encourage the adoption of solutions studied
and proposed in netCommons Task 2.4, and the integration with OpenWISP2 will help disseminating these
concepts outside the ninux community. Further adoption and impact of our software in the third year of the
project will be documented as dissemination activities in WP6.
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1. Introduction
This is the final deliverable of Task 2.4 “Monitoring instruments for CNs”. Naturally, the starting point of this
report is D2.5 [1], reporting on the development of multi-layer graph metrics that Community Networks (CNs)
can use to understand the degree of decentralization of both their communication and social networks. The
analytic classification work provided by D1.2 [2] and D1.4 [3] as well as the social and legal analysis of D2.2 [4]
and D4.2 [5] are clearly also part of the background needed to develop and understand this work. Additional
background is provided by the paper [6], developed thanks to netCommons support. Its ideas and results were
partially included in D2.5 and partially into this Deliverable. D2.5 has documented how the analysis of a
CN at different logical levels of its structure and organisation can highlight weak points, vulnerabilities and
structural patterns that are not easily spotted by a third party looking into the CN. Most importantly, these are
also invisible to the owners and developers of the networks itself, as for instance the dominance level of a small
clique (or, even, a single person) in the social structure of the network. The general background for this work
is framed by the scientific works [7, 8, 9, 10, 11, 12, 13, 14, 15], the most recent of which are also partially
supported by netCommons.
This Deliverable documents the additional steps taken in the second year of the project to introduce a new
analysis based on the interpretation of a CN as a spatial network. A spatial network is a network in which
every node is assigned a position in a coordinate system. The study of spatial networks is important in systems
that represent physical infrastructure such as road maps and energy distribution systems [16]. A community
network is indeed a spatial network. The peculiarity of spatial networks, as opposed to other kinds of network
graphs (a social network graph, for instance) is that links have an associated cost, and the cost increases with
the length of the link. In the literature, it was observed that for this reason spatial networks tend to develop a
spatial hierarchy [17]. In this Deliverable, we first detail this concept. Then we analyse two networks for which
we have localization data as to whether they have developed the same kind of hierarchy, and we show that this
is partially true. This suggests that the spontaneous evolution of a CN may lead to another kind of vulnerability,
which should be addressed by the community, and we give simple suggestions on how to prevent this.
This Deliverable also reports on the experiments with the tools developed in D2.5, and their integration with an
open source monitoring instrument for CNs, and wireless networks in general, to increase the potential impact
of netCommons work. The OpenWISP2 Network Management System (NMS) is an open source platform
that is gaining attention as management tool among community networks and small Wireless Internet Service
Providers (WISPs). It is developed by a community of developers, receiving feedback from practitioners (some
of them being part of the ninux network), and seems a promising solution for the management of bottom-
up networks. We decided to integrate part of the instruments detailed in D2.5 into OpenWISP2. Currently
OpenWISP2 does not include the information about node position and node ownership, so at the time of writing,
we need to restrict the analysis to the communication network. As soon as OpenWISP2 is extended with new
data-sets, the code we introduced in OpenWISP2 will be able to show most of the metrics we proposed so far.
As detailed in Chapter 3 in order to achieve a higher impact on communities, we preferred to integrate a subset
of the functions of our code (with an extensible design for future improvements) into OpenWISP2 rather than
maintaining our own monitoring system.

1.1. Contribution to netCommons Goals

Historically, the adoption of distributed systems and functions instead of centralized ones has always been
related to the reduction of single points of failure. A distributed system is generally imagined as a resilient,
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1. Introduction

self-healing system that is able to re-configure itself after a failure. As a relevant example, since the very
beginning of packet switching, the Internet was imagined as a distributed (or at least decentralized) system in
order to make it robust to the failure of some of its components.
However, the sheer difference between distributed and decentralized is sometimes not well understood, and the
principles underlying distributed systems are interlaced with peer-to-peer paradigms, bottom-up or grassroot
development and the like. How are distributed systems indeed designed (or not-designed) and deployed? There
is a general tendency of considering “distributed” whatever system was not planned to be hierarchically orga-
nized from its beginning. This is the case of a community network, in which the participants avoid as much
as possible the actions that would introduce an explicit hierarchy in the network or in the community. How-
ever, if we look at both the literature in the technical and in the social sciences fields, we observe that implicit
hierarchies tend to be spontaneously created in networks, even when there is no explicit design decision to
introduce them. Some systems naturally tend to create a hierarchy, as also Chapter 2 illustrates. A system that
includes an implicit hierarchy should be more protected, as all hierarchical systems tend to be more vulnerable
to failures of the higher tiers. As already explained in D2.5 the designer of an hierarchical system must take
into consideration the robustness of a network, and add in key elements providing the infrastructure with some
redundancy. If a system, instead, is thought to be distributed (and thus, naturally resilient), but it actually hides
a hierarchical organization, the system is vulnerable.
The goal of this Task has been to introduce some metrics and the open source tools necessary to compute
them, which could unveil to what extent a community network is fragile in the sense of presenting single
points of failure. While D2.5 introduced the metrics, this deliverable extends that analysis and documents
the effort in integrating these metrics into an existing network monitoring system. The final result is an open
source instrument that can tell, at a glance, what are the single points of failure of a network, and thus help a
community improve its resilience.
In the context of WP2, we point out that resilience is a key element of sustainability. In general, a system is
considered sustainable if, in first place, is able to endure. This concept is naturally extended to the impact of
a system on the outside world [18] but, in first place, a CN needs to be able to grow while maintaining intact
its funding principles. If a CN can not grow because periodically some key components crash or abandon the
community, the CN is not sustainable. Similarly, if it grows, but it changes its nature (from a P2P network to a
network driven by a very small minority of people) again, its initial model can not be thought as a sustainable
one. This Task helps communities highlight their points of failure, and thus evolve in a sustainable way which
is one of the explicit goals of netCommons.

1.2. Impact on Community Networks

The impact of Task 2.4 is rather long-term since monitoring requires time, the analysis of the data obtained with
the monitoring activity even more, and modifications of Community Networks (CNs) or their management can
only happen after the analysis. The following list summarizes the actions that are expected to have the major
impact on CNs, while Chapter 5 discusses in detail the impact already documented on ninux.

• The metrics introduced in this Task, and the source code developed and made public, are a powerful tool
for analysing the state of CNs and understanding their eventual fragility.

• Carrying out an analysis on ninux unveiled vulnerabilities that were not earlier perceived. These results
have been shared with the community, which is now taking actions to mitigate them.

• Part of the research work has been integrated with a promising platform for the management of CN called
OpenWISP2. The platform makes it possible to monitor some key features of a network in order to give
direct and continuous feedback to the community members, and prevent the creation of single points of
failure.
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2. Spatial Networks and Network Hierarchy
This chapter details the work done in the characterization of a CN under the lens of “spatial networks”, a
specific type of networks that presents peculiar features. It is at the base of a scientific paper that is currently
under preparation, and will extend the work done in [6].
A spatial network is a graph G(V,E) made of a set V of nodes and a set E of edges in which every node has a
“position” attribute. Spatial networks are used to represent physical systems, such as road networks or power
grids [16], and their growth can be modelled using a Cost-Benefit Analysis (CBA) framework [17]. A CBA
seeks a balance between two competing effects: the first is the classical “rich gets richer” effect, in which the
probability that a new node v

i

is connected to an existent node v
j

increases with the number of neighbors that
v
j

already has (as in the Preferential Attachment (PA) model [19]). The second effect is given by a real life
constraint: the cost of a physical edge increases with its length, moreover, beyond a certain distance, setting
up a link becomes also very difficult, thus the probability of adding an edge between v

i

and v
j

decreases with
the distance between v

i

and v
j

. It has been shown that when the second effect has a non-negligible influence,
spatial networks tend to become hierarchical networks, and we are interested to understand if this happens also
with CNs. Before we give a precise measure of the hierarchical structure of a network, we justify how in a CN
both effects exist.

2.1. Preferential Attachment vs. Cost-Based Analysis in CNs

Consider a node v
i

placed in a dominating position (for instance on the top of a hill). Potentially, many new-
comer nodes will have line of sight with v

i

, and thus, v
i

will probably have many neighbors. As a consequence,
the community will improve the node adding radio devices, which will increase the horizontal angle covered by
the node (recall that large-scale CNs primarily use directive antennas). This will make it even more likely that
new neighbors can be added, so the “rich gets richer” effect takes place. However in a CN the performance of
a wireless link decreases with its length and links of arbitrary length can not be realized. These two competing
effects exist and it is interesting to understand if a CN, like other spatial networks modelled with a CBA, shows
a hierarchical structure.

2.2. Network Separation

We can now introduce the definition of a metric that expresses how much a network can be considered hier-
archical. We start from a generic metric used in the literature [17] and we customise it to support the specific
characteristics of CNs. We omit some design details in this section, which can be found in Appendix A.
The first step to define a spatial network and its separation is the identification of a root node, say v0. Next,
every other node in the network is assigned a “level” l(v

i

), which measures the distance from the root node
v0. The selection of v0 is critical, but also somewhat arbitrary, unless a pre-defined structure is present, or is
sought for, which is not the case for CNs. One logical way of selecting v0 is choosing the “most central” node,
but centrality must be defined before hand. We tested several centrality metrics to define the root node (see
Appendix A for the tests and selection criteria), and we finally chose the node with the highest eccentricity1.
The level l(v

i

) = d(v0, vi) is simply defined as the distance (in terms of hops) of v
i

from the root node.
1The eccentricity of node v

i

is given by 1
maxj(d(vi,vj))

where d(v
i

, v
j

) is the distance from v
i

to v
j

. Thus the eccentricity is a
centrality metric that measures how much a node is barycentric in the network, or in other words how much it will cost to distribute
a message from that node to the most distant node in the network.
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2. Spatial Networks and Network Hierarchy

For each node v
i

a subset N 0(i) of its neighbors N(i) is defined as:

N 0(i) = {v
j

| v
j

2 N(i) ^ l(v
j

) > l(v
i

)}. (2.1)

i.e., among the neighbors of v
i

N 0(i) collects the nodes v
j

that have a higher level than v
i

, or in other words
those that are farther away from v0 given the distance selected.
Given the subset N 0(i), we can define an “influence zone” of v

i

, which is an area that contains all the nodes
in N 0(i); the specific definition of the area is application-dependent, meaning that it must be representative
of some specific features of the application domain considered. For CNs, we use the convex hull of all the
positions of the nodes in the subset, because this spatial definition correctly captures the notion of influence for
a physical network whose growth is greatly influenced by the possibility of setting up a link with a given node
v
i

. Given a level l and a node v
i

|l(v
i

) = l we call Ii

l

the influence zone of v
i

, and we call I
l

= [
i

Ii

l

. A spatial
network is said to be geographically separated if both these conditions hold:

Ii

l

\ Ij

l

= ; 8 l if i 6= j (2.2)
I
l+1 ⇢ I

l

8 l (2.3)

Real networks are never completely separated, so a metric to measure their degree of separation is needed. The
separation of two zones in the same level is defined as:

s
l

(i, j) = 1�
Area of the overlap between Ii

l

an Ij

l

min(Area of Ii

l

, Area of Ij

l

)
(2.4)

Similarly, we can define the separation index for level l, which we refer to as intra-level separation, as the
average of the separation of the zones in the same level. If we call V

l

the subset of V containing all the nodes
at level l, then:

s
l

=
2
P||V

l

||
i=0

P||V
l

||
j=i+1 sl(i, j)

||V
l

||(||V
l

||� 1)
(2.5)

where ||V
l

||(||V
l

||�1)
2 is the number of all the possible couples (v

i

, v
j

) of nodes in V
l

and || · || is the size of a set.
If s

l

is close to 1, then the zones inside level l are almost perfectly separated, otherwise, there is overlapping in
the intersection between each zone in the graph.
We also define a metric to measure inter-level separation:

ŝ
l

= 100 ⇤ Area of ([i=l

i=0Ii)
Area of([i=l

max

i=0 I
i

)
(2.6)

where l
max

is the number of levels in the network. The progression of the values of ŝ
l

tells if the levels of the
network are progressively covering larger portions of the territory or the levels are organized like Russian dolls.
The reason why we are interested in spatial separation is that a network that is fully separated is strongly
hierarchical: Eq. (2.2) says that nodes at the same level can not communicate without first ascending and then
descending again in the network hierarchy, and in practice the topology of the networks becomes a tree. In
such a network the nodes that are close to the root node are more important than the others, and their failure
will dramatically impact the rest of the network. Eq. (2.3) says that the influence of every node is included in
the influence of its parent, in practice, the network does not grow if the root node does not enlarge its influence
zone (and the same stands for the other levels in cascade).
Since the literature shows that in spatial networks modelled with a CBA the average value of s

l

quickly saturates
to 1 as soon as the cost-per-mile of a link becomes non-negligible [17], in the sequel we analyse if and to what
extent the ninux community unwillingly built a hierarchical, but not redundant network, thus making it fragile
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2. Spatial Networks and Network Hierarchy

to both physical and social impairments. This analysis can be replicated in any other network with the tools we
developed, giving a mathematically and technically sound measure of the networks resilience.

2.3. Ninux as a Spatial Network

Tab. 2.1 reports the intra-level separation at each level in the ninux network, together with the number of zones
per level. Tab. 2.2 reports the values of the inter-level separation, the corresponding percentage of the total
area covered by level l, and the percentage of nodes included in each level. Tab. 2.1 shows that for every level,
s
l

is fairly high, that means that the nodes of the network in the same level are not densely connected and the
chances that there are “horizontal” paths from a node to another are few. On the other hand the values of ŝ

l

suggests that the network expands from its periphery, so that the higher the level, the more area is covered.

level zones s
l

0 1 -
1 1 -
2 3 0.93
3 4 0.95
4 6 0.90
5 9 1.00
6 6 0.80

Table 2.1: Average intra-level separation in
ninux.

level ŝ
l

Area (%) Nodes (%)

0 0.37 0.37 5
1 22.85 22.85 44
2 31.33 7.78 63
3 54.87 12.55 78
4 66.37 45.66 81
5 100.00 31.60 100
6 100.00 9.63 100

Table 2.2: ninux inter-level separation, percent of
area covered at each level and corresponding

number of nodes. Since areas are overlapping the
third column does not sum to 100%, and the sixth

level areas are fully overlapping with the
previous ones.

The first characteristic is similar to the other spatial networks described in the literature, which means that CNs
are not an exception compared to other networks. In practice, there is no direct incentive in making the network
more dense and redundant, while there are incentives in connecting the highest number of nodes with the lowest
number of edges. As we see from table Tab. 2.3 the network is made with a number of edges that is close to
the minimal number (number of nodes minus one). On the other hand, the inter-level separation shows that,
contrarily to other networks, a CN does not enlarge from its center, but from its edges. This means the network
is not strictly hierarchical (like a gas distribution system, for instance) and allows the fringe of the network to
expand without having to add antennas on the nodes in the center of the network. This characteristic is quite
evident observing that the covered area increases with the level, and it is clear looking at Fig. 2.1, that reports
the zones on top of the map of Rome. Note also that there is no evident correlation between the level and its s

l

;
excluding level 5, that is fully separated, all the others are only partially separated.
This analysis shows that ninux failed to realize a spatially distributed network, and realized a spatially hierar-
chical network. Since interest zones of nodes at the same level are often disjoint, if a link that goes from one
level to the higher one is broken, not only there is no way to re-route traffic across some other zone in the same
level, but it is also improbable that some other node in the neighborhood can be re-configured (re-pointing its
antenna) to cover the area that was left uncovered. Thus, the higher the level of a node, the more important it is
to guarantee a wide geographical coverage of ninux.
A possible means to reduce network separation would be to increment the density of links per node. At the
current state of things, a new node v

i

is connected only to the closest node in line of sight, and then, a new
device is added to it only when some other new node v

j

needs to connect to v
i

to enter the network. One way
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2. Spatial Networks and Network Hierarchy

Attribute Value

# nodes 114
# edges 128
average degree 2.246
diameter 13
average path length 6.014
modularity 0.79
density 0.02
average clustering coefficient 0.067

Table 2.3: Main attributes of the geo-located ninux communication network.

of increasing the density is to mount an additional device on v
i

at its creation, even if there is no other node to
connect to at that time. Adding spare devices pointing in an uncovered direction will make it more likely that in
the future new nodes will join, or that existing nodes will be connected to more than one other node, in order to
increase the density. With an even stricter approach this could be translated into avoiding leaf nodes, so that a
new node is added to the network only if it can connect to at least two other nodes, or at least proper incentives
are given to avoid leaf nodes if possible.
Note that, after the diffusion of the initial results on the analysis of ninux at the ninuxday 2016, one ninux
island decided to start a discussion on the formal agreement that every ninux participant needs to accept to
participate (the so-called Picopeering agreement2). The proposed modifications include clauses that improve
the communications between peers forcing participants to make themselves available to receive communica-
tions from other potential peers. If they do not respect this clause, they may be excluded from the network,
as they do not respect the agreement. This simple modification, together with a proposal of standardisation of
network nodes in a way that makes it easier to transform a leaf node into a non-leaf node, are the answer that
the ninux community (in particular, the impulse came from the ninux community in Calabria, South of Italy)
to minimize the possibility of creating leaf nodes in ninux. This was one of the hot topics of discussion in
ninuxday 2017, after the discussion on centralization and decentralization that took place in 2016, also with the
input of netCommons.

2.3.1. Comparison with the FFWien CN

The spatial coverage of ninux depends on a number of factors that are specific to that network. In order to
broaden our analysis we were able to collect the geo-referenced data of another network, the FunkFeuer network
in Vienna (Austria), which we refer to as FFWien3. FFWien is a much denser network, made of 196 nodes and
249 edges, concentrated in an area that is 13 times smaller than the area or ninux. Tabs. 2.4 and 2.5 report the
separation metrics for FFWien and show a quite different situation, with lower average values, especially in the
first 3 layers, which contain 77% of the nodes.
This difference outlines that a CN is strongly influenced by the external conditions, such as the density of nodes,
the capacity and reach of the wireless devices, and the altitude profile of the area.
To understand the general properties of a CN, it would be extremely interesting to develop a network topology
generator that takes into consideration these conditions and easily generates realistic topologies, in order to
study their properties in different environments, such as densely inhabited cities or rural areas. Let us expand
this vision with some more concrete examples. In the scientific literature, the models used to describe networks
have passed through several generations. At the beginning, simple models like the Erdős graphs were used to
describe networks. These models are now the base of any graph theory book, but have been found to be strongly

2Directly derived from https://picopeer.net/.
3See http://funkfeuer.at
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2. Spatial Networks and Network Hierarchy

(a) Level 0 (b) Level 1 (c) Level 2

(d) Level 3 (e) Level 4 (f) Level 5

(g) Level 6

Figure 2.1: The Interest zones for all the levels of the ninux network. Note that level 0 is made of a single
zone that is very narrow and thus, barely visible in the picture. Level 1 contains a single Interest zone, and

Level 5 is completely separated.

different from real networks. A second step is represented by the Waxman model [20], which introduces the
concept of “distance” in the generator, and subsequently, the research due to Barabási [19] produced a large
interest in power-law graphs. Finally, Willinger and Doyle disputed the approach of Barabási and proposed
a new family of models for real networks [21]. In the last decade, this theme lost scientific appeal in favour
of efforts that try to map the real structure of the Internet. Today, a new wave of graph generators could be
triggered by the analysis of CNs. First of all, these networks are innovative, and large scale networks have
been appearing only in the last few years. Second, their future evolution is unknown, and, as we stated multiple
times, it depends on the community that runs the network.
A synthetic network generator could be helpful to generate potential topologies that leverage on the availability
of many sources of open data. City maps, buildings topologies, elevation data, could be helpful to imagine
the evolution of a network given the underlying real world constraints. Moreover, adding cost consideration
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level zones s
l

0 1 -
1 4 0.78
2 10 0.53
3 14 0.82
4 11 0.98
5 4 1.00

Table 2.4: Average intra-level separation within
each level in FFWien.

level ŝ
l

Area (%) Nodes (%)

0 1.39 1.39 6
1 18.59 15.33 46
2 54.62 45.56 77
3 74.95 48.80 92
4 99.63 41.42 97
5 100.00 0.72 100

Table 2.5: FFWien inter-level separation, percent
of area covered at each level and corresponding

percentage of nodes.

to this generator (the cost of setting-up and maintaining a wireless link) could help understand the cost to the
final user of such networks, and thus, the amount of people that could be interested in this technology. As the
data about population income are publicly available by national surveys, and are geo-located, matching cost
considerations with geographic distribution of people could help understand how and where these networks
could possibly evolve. With such an instrument it would be possible to generalize the features of CNs and
compare them with the topologies of wired networks to understand if there are any intrinsic differences rooted
in the technology used to realize CNs. These differences would be not only technological, but also of social
impact.
This is not a goal that can be reached in the netCommons project, but is part of future research that will be
carried on, based on the results and experiences of netCommons.
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3. Monitoring Ninux
This section describes the two software platforms that T2.4 used as a base for the development. The first one is
the NodeShot architecture used by the ninux CN to visualize and manage the network. The second platform is
composite: a set of other tools that are based on the NetJSON standard and the OpenWISP platform. While the
first platform is used only by ninux and is not actively supported, the latter is the approach that ninux has taken
for its future developments and involves a community of users that is potentially much larger than ninux alone.
Given the larger potential impact on CNs we decided to focus on the second solution, even if, being currently
under development, this may introduce some delay in the monitoring phase.

3.1. The NodeShot Architecture

NodeShot is the software currently used by the ninux community to manage the network. NodeShot has the
following goals:

• Display the map of the network;
• To be the entry-point for the new user that wants to add a new node to the network. The new user will

add a new “potential” node to the map and contact (via the platform) the owners of the nodes that are in
line of sight with his/her new node;

• Play the role of a Local Internet Register. When a new node is added to the network, an IP address and a
subnet needs to be allocated for the node, in a way that does not conflict with the already assigned ones.
Being ninux a distributed network, the IPs already assigned are reported in a Wiki page, but also on the
mapserver.

NodeShot is an open source software developed internally by the ninux community that achieves these goals.
There are currently two versions of NodeShot, both connected to the same database, both written in Python.
The first one is the legacy platform, the second one is a full rewrite of the legacy platform, and can be visited at
https://ninux.nodeshot.org/, Fig. 3.1 presents a screenshot of the new interface.

Figure 3.1: The ninux network as presented in NodeShot
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Albeit the platform reached a relatively stable state, and it is used by many ninuxers, the author of the platform
decided to move to a new project, based on the NetJSON specification. There are two main reasons for this
choice, the first is that the platform was realized as a stand-alone monolithic framework, which quickly turned
to be hard to maintain, the second is that the author of the project felt that this was “yet another CN mapserver”.
This second issue deserves to be detailed, since it describes a trend that is present in the world of CNs. While
CNs cooperate and communicate to develop the basic building blocks of the networks (drivers, routing protocols
etc. . . ) the rest of the applications needed to run a network are generally realized ad-hoc by every community.
There are today several map visualizers available for CNs: NodeShot for ninux, freifunk-karte1 for Freifunk,
NodeWatcher for Wlan-Slovenija2, and many more. All these pieces of software share a common core of
functions but also implement some peculiar feature related to the needs of the community that developed it. As
a result, they are not interoperable and there is a large duplication of efforts from community to community.
Federico Capoano, the main developer of NodeShot, decided to start from scratch with a new approach, based
on the definition of open standards to make the projects interoperable, and modular tools to visualize and
present the data, plus perform network and device management.
The standard for the description of a community network is NetJSON, and the suite of tools currently under
development revolve around the OpenWISP platform, described in Sec. 3.2.

3.2. The NetJSON and OpenWISP Ecosystem

3.2.1. The NetJSON Specifications

As reported in the official netJSON website3:
“NetJSON is a data interchange format based on JSON designed to ease the development of soft-
ware tools for computer networks. NetJSON defines several types of JSON objects and the manner
in which they are combined to represent a network: configuration of devices, monitoring data,
network topology and routing information.”

The stated goal of netJSON is to:
“build an ecosystem of interoperable software tools that are able to work with the basic building
blocks of layer2 and layer3 networks, enabling developers to build great networking applications
faster.”

NetJSON is under development and it is described in an informational RFC4. The final goal of NetJSON is
to let every community network interoperate easily with a common format. In the past in fact, many CNs
developed non-portable and non-interoperable software that do approximately the same things such as an IP
database, a map server, a monitoring tool. While it is very hard to coordinate these efforts in a global way
(every community has specific needs and every developer has specific skills) it is easier to define a common
format that developers can use to at least make their software partly interoperable. NetJSON is today the main
effort toward such an interoperable platform, and, while its formal standardisation is obviously following the
lengthy and uncertain paths of IETF processes, its use is instead growing among the various communities and
developers5.
Fig. 3.2 reports an example of the NetJSON syntax, and shows how NetJSON has the advantage of being clear,
human-readable and extendable with custom data (included in the “properties” tag).

1See https://www.freifunk-karte.de/
2See https://github.com/wlanslovenija/nodewatcher
3See www.netjson.org
4See draft-capoano-kaplan-netjson-00, http://netjson.org/rfc.html
5See http://netjson.org/docs/implementations.html for a set of software pieces that use NetJSON
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{
” t y p e ” : ” NetworkGraph ” ,
” p r o t o c o l ” : ” o l s r ” ,
” v e r s i o n ” : ” 0 . 6 . 6 ” ,
” r e v i s i o n ” : ”5031 a799fcbe17f61d57e387bc3806de ” ,
” m e t r i c ” : ” e t x ” ,
” r o u t e r i d ” : ” 1 7 2 . 1 6 . 4 0 . 2 4 ” ,
” nodes ” : [

{
” i d ” : ” 1 7 2 . 1 6 . 4 0 . 2 4 ” ,
” l a b e l ” : ” node�A” ,
” l o c a l a d d r e s s e s ” : [

” 1 0 . 0 . 0 . 1 ” ,
” 1 0 . 0 . 0 . 2 ”

] ,
” p r o p e r t i e s ” : {

” hos tname ” : ” node1 . my . n e t ”
}

} ,
{

” i d ” : ” 1 7 2 . 1 6 . 4 0 . 6 0 ” ,
” l a b e l ” : ” node�B” ,
” p r o p e r t i e s ” : {

” hos tname ” : ” node2 . my . n e t ”
}

}
] ,
” l i n k s ” : [

{
” s o u r c e ” : ” 1 7 2 . 1 6 . 4 0 . 2 4 ” ,
” t a r g e t ” : ” 1 7 2 . 1 6 . 4 0 . 6 0 ” ,
” c o s t ” : 1 . 0 0 0 ,
” c o s t t e x t ” : ”1020 b i t / s ” ,
” p r o p e r t i e s ” : {

” l q ” : 1 . 0 0 0 ,
” n l q ” : 0 .4 9 7

}
}

]
}

Figure 3.2: An example of a NetJSON dump.

3.2.2. netjsongraph.js

The netjsongraph.sj6 project is a Javascript library, based on the D3 framework that is able to visualize topolo-
gies expressed in the NetJSON format. This simple library is currently able to serve a dynamic output to a

6See https://github.com/netjson/netjsongraph.js.
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browser out of a network description in NetJSON. It depends only on D3, which is a well known Javascript
framework and it is used to quickly visualize a network topology.
While netjsongraph is extremely simple compared to other visualization libraries, it has the advantage that
being based on NetJSON, any network can be visualized. If the routing protocol that is used to route packets
in the network supports the generation of NetJSON output (like the OLSRd version 1 and version 2 daemons),
then its output can directly be visualized in a browser. Fig. 3.3 reports an example of the output generated by
netjsongraph.sj7

Figure 3.3: The netjson visualization of the ninux network in Florence.

Note that the map is dynamic and the box on the top right is the description of the node “10.150.9.1” on which
the user clicked (top left) before taking the screenshot.
Netjsongraph is thus a convenient choice to offer network monitoring tools to community networks, because it
relies on NetJSON, so in principle any network that exports its topology in the NetJSON format could be using
the monitoring tools developed in T2.4.

7The screenshot is taken from http://ninux-graph.netjson.org/ that is an initial attempt to export all the ninux islands in NetJSON. Note
that NetJSON can be natively exported by the OLSRv2 protocol, which is currently used only in a small fractions of the networks.
The support for OLSRv1 relies on a dedicated plugin and thus it is not widespread.

D2.7: Monitoring CNs 18



3. Monitoring Ninux

The functions of netjsongraph.js are currently being expanded with a series of efforts, both from the main
developer (Federico Capoano) and from some students that were able to receive a Google Summer of Code
scholarship. The OpenWISP project, in fact, was recognized as a valid association for the Google Summer of
Code project and this way it was able to fund several developments8 among which:

• Adding canvas to netjsongraph.sj visualizer, in order to geolocate the nodes and visualizing them as an
overlay on a map;

• Extending OpenWISP2 and django-netjsongraph.sj in order to support the visualization of mesh network
topologies on OpenWISP2.

3.2.3. django-netjsongraph.js

The last component of the NetJSON ecosystem that is relevant to netCommons is the django-netjsongraph
library9, which is a Django module to display topologies extracted by real networks using NetJSON.
Django is a well known “high-level Python Web framework that encourages rapid development and clean,
pragmatic design”10. Django is used on tens of thousands of websites, it has a very large developer community
and it is well documented, thus we will not give more details about it. Django has a modular structure, so it is
easy to compose different modules to realize a web application.
Summarising the contents of the project page, some of the goals stated for django-netjsongraph are:

• Make it easy to visualize network topology data for the formats supported by netdiff11;
• Expose topology data via RESTful resources in NetJSON NetworkGraph format;
• Make it easy to integrate in larger django projects to improve reusability;
• Make it easy to extend its models by providing abstract models.

In a nutshell, NetJSON is a standard language to describe networks; netjsongraph is a javascript library to
visualize the topologies. django-netjsongraph adds the instruments needed to acquire the information from the
NetJSON description, elaborate them and save them in a database, and finally leverage the power of Django
to manage them. With django-netjsongraph a developer can, in a few minutes, set-up a network visualizer for
any network, given only an URL pointing to a NetJSON file. Other formats for the topology description are
obviously supported by django, but we are not interested in them.

3.2.4. The OpenWISP2 Platform

OpenWISP is an open source Network Management System (NMS) for wireless networks initially developed
by the Italian CASPUR university consortium (now integrated into Cineca, a non profit Consortium made up
of 70 Italian universities, 8 Italian Research Institutions and the Italian Ministry of Education) currently used
by tens of public administrations in Italy and abroad12.
OpenWISP2 is the new version of the OpenWISP project, it’s a full rewrite of the original project and its
goal has now broadened, from a platform devoted mainly to the management of public networks to a generic
platform for the management of wireless networks. The development of OpenWISP2 is currently undergoing
and it is partly financed by Cineca, partly it is community-driven, with several developers and early users that
contribute to its evolution. The interactions between the members of the community take place in the project
mailing list, in the Github code repository and on several other informal channels (such as IRC chats)13. Since
OpenWISP2 bases its terminology on a standard ISP-oriented architecture, from now on we will refer to an

8See http://openwisp.org/gsoc/ideas-2017.html.
9See https://github.com/netjson/django-netjsongraph.

10See https://www.djangoproject.com/.
11netdiff is a library that converts topologies in several known formats into NetJSON.
12http://openwisp.org/history.html
13See the project mailing list https://groups.google.com/forum/#!forum/openwisp and Github repository https://github.com/openwisp
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hypothetical “network owner” to describe OpenWISP2 and its dynamics. Further on we will then explain and
detail how it can be easily tailored for CNs.
A NMS is an instrument that is used to manage large enterprise networks, and it is made of a specialized
program running on each node and a centralized manager. The manager is aware of the presence of the nodes,
and contains a directory of configurations for each of them. The nodes periodically poll the manager asking
for updates on their configuration, and when an update is present, the manager pushes the update to the nodes.
As a simple example consider the case in which the owner wants to change the name of the wireless network
(the ESSID exposed in beacon frames, in IEEE 802.11 terminology). Without an NMS he should reconfigure
singularly each wireless router, while the NMS makes it possible to change the configuration in one single place
and have it deployed on all the routers. This is a very simple example of what can be done with a NMS, which
in general can be used also as a diagnostic tool and for user management.
To use OpenWISP2 the owner will have to replace the firmware of the wireless nodes he intends to use (this
will not be strictly necessary anymore in the future for products of some supported brands) with a specially
crafted version of OpenWRT/LEDE that includes the openwisp-config daemon. The daemon is configured to
periodically poll the manager, which stores a set of configurations that can be used on the wireless nodes. Sev-
eral configurations templates that can be used to manage the nodes of a CN are already present in OpenWISP2,
and that’s why some islands of the ninux community are already using OpenWISP2 to manage their network.
As Fig. 3.4 shows OpenWISP2 is a web-based software developed using the Python language and the Django
web framework. OpenWISP2 can be installed on a virtual machine using Ansible14, for which a specific role
is available. At the time of writing OpenWISP2 has a management back-end that is used by the network owner
to modify the configurations of each node, and a minimal diagnostic interface that tells if the node is currently
active (it is polling the manager) and has successfully applied the last configuration update. What is currently
missing is a public front-end that can expose the network status and additional information, similarly to what
NodeShot does (see Fig. 3.1).
Regardless of its current early state of maturity the project is growing, there are 271 members in the official
mailing list that is pretty active15, the code updates are frequent, there were about 967 installations of the
related Ansible role16 and one public administration that is already using it to manage a running network17.
This attention is expected to increase as soon as the product stabilizes and the various users that currently use
the older version will switch to the new product.
OpenWISP2 obtained this year 5 students grants from the Google Summer of Code project to develop fea-
tures that are useful for CNs. OpenWISP2 also become part of the Google Code-In project, which helped the
visibility of the project.

3.2.4.1. OpenWISP2 in Ninux

Being OpenWISP2 open source, the ninux community is experimenting its use for the management of the
network nodes. The lead developer of OpenWISP2 is also part of the ninux community network and the lead
developer of the NodeShot platform, which he intends to replace with OpenWISP2 as soon as a public front-end
will be ready. The currently missing features that are necessary in order to use OpenWISP2 in the context of a
CN are mainly two, the first is a network visualizer that also integrates geographical information and ownership
information, as it is the case for NodeShot. The second is a way to implement multi-tenancy in the network
manager, that is now intended to be used by a single owner to manage the whole network. This is clearly not
the case of a CN in which all users have the permission to manage only their own nodes.
The realization of these features are currently undergoing, and will be based on the NetJSON standard, the

14See https://www.ansible.com/
15See https://groups.google.com/forum/#!aboutgroup/openwisp
16https://galaxy.ansible.com/openwisp/openwisp2/
17https://twitter.com/openWISP/status/826763786728140801
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Figure 3.4: The components of the OpenWISP2 platform, taken from the github project page.

netjsongraph.js library and the django-netjsongraph module. Thus, it is important to follow the development of
these modules and to contribute to their advancement.

3.3. Developments in the Period M12-M24

After an initial analysis and interaction with the ninux community and Federico Capoano we decided that it
would have been certainly more rewarding, both for the outcome of the project and for the ninux communities
to integrate the functions developed in T2.4 in the OpenWISP2 code base rather than pushing them in the
NodeShot platform or creating another monitoring platform. Even if currently the OpenWISP2 platform is
not ready for production, in the future it will replace NodeShot and will be used potentially by tens of other
wireless networks, small WISPs and community networks. We believe that OpenWISP2, being an innovative
solution not only for CNs but also for the market (in fact, several private initiatives use OpenWISP2 in their own
networks) and being developed also with the funding coming from a public administration has higher chances
of success than the other currently available management platforms for CNs. As OpenWISP2 is not designed
from scratch for a specific network we believe it has higher chances to be applied not only in the CN context
but also in the context of other similar initiatives.
This choice obviously comes with some consequences, which can be summarized in the lack of some features
that are needed to reproduce in a production environment all the results obtained in D2.5. We refer to, in
particular, the lack of data on the ownership of nodes (as already explained) and the lack of access to the data
coming from the social network. These two limitations do not let us perform the social analysis in OpenWISP2
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which was made for D2.5, and restricts us to the topological analysis of the network for the time being. We
opted for the following approach:

• We realized a Python module that analyses the robustness of a given network, and produces another
network graph that is different from the original one because it compresses parts of the graph that are
not critical, while putting in evidence those nodes that are instead critical ones. This module is named
netjson_robustness and is freely available in the Github repository of the project18;

• We extended the netjsongraph.js library in order to support a better visualization of the elaborated
network graph. This required modifications to the visualization of the graph and it is also available
online19;

• We extended the functionalities of the django-netjsongraph python module to support the pos-
sibility of showing the same network graph with more than one “visualization”. This feature required
modifications in the database model and in the visualization of django-netjsongraph, and are available
online20.

This approach, which will be better detailed in Chapter 4, allowed netCommons to reach two very important
goals:

• Produce an operational modification to OpenWISP2 that can be used by CNs and small WISPs to under-
stand at a glance the robustness properties of their network. This feature was well received from both
the OpenWISP2 main developer and some ninux activists. As a confirmation of this, we are in an active
discussion within the OpenWISP2 community to let our feature become part of the next stable version of
OpenWISP2, as testified in the letter included in Appendix B;

• Produce a flexible instrument that supports a generic number of visualizations, which can be extended in
the future when OpenWISP2 will support multi-tenancy, integration with the communication platforms
and geolocation of nodes.

Of course, this approach required us a large effort to understand and contribute to an already existing platform,
instead of creating our own. OpenWISP2 uses the Django Python framework, which is extremely powerful
and versatile, but has a steep learning curve. It requires adherence to the conventions of the project and can
not allow the flexibility of a fully home-brew project. Furthermore, producing code for a professional platform
requires a level of commitment and attention that is different from a research prototype. We had to spend a
considerable amount of time performing tests that are necessary to show to the project maintainer that the code
is stable and behaves properly even in situations that are typical of a production system (code must be efficient,
resilient etc.). These features can receive less attention when the goal of the source code is experimenting.
We opted for this choice because we wanted to give more importance to the direct impact on the community,
while maintaining the possibility to extend the system with more features (more visualizations) when Open-
WISP2 will support a larger information base.

18See https://github.com/netCommonsEU/netjson robustness
19See https://github.com/netCommonsEU/netjsongraph.js/tree/robustness graph
20See https://github.com/netCommonsEU/django-netjsongraph
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We will describe here the developments done in three modules, the netjson robustness,
django-netjsongraph, and the netjsongraph.js modules. All the developed code is available in
the github repository of the project1, together with the rest of the code developed in WP3, please see the net-
Commons website for guidance2.

4.1. The netjson_robustness library

OpenWISP2 includes a feature that allows the network administrator to visualize the network topology, as
shown in Fig. 3.3. As long as the network is of a size similar to the one in the figure, the administrator can easily
spot critical nodes. When the network grows, this is impossible to do at a glance, and must be done algorith-
mically. In D2.5 we used some network metrics (centrality and robustness metrics) that help us to measure the
importance of nodes. Part of these metrics and the original code was re-used in the netjson robustness
python module.

Listing 4.1: config.cfg source file
from distutils.core import setup
setup(

name=’netjson_robustness’,
packages=[’netjson_robustness’],
version=’0.1.1’,
description=’A library to perform some robustness analysis on ’

’NetJSON-defined graphs’,
author=’Leonardo Maccari’,
author_email=’maccari@disi.unitn.it’,
url=’https://github.com/netCommonsEU/netjson_robustness’,
download_url=’https://github.com/netCommonsEU/netjson_robustness/’

’archive/0.1.tar.gz’,
keywords=[’NetJSON’, ’graph analysis’, ’robustness’],
install_requirements=’networkx’,
classifiers=[],

)

The netjson robustness module manipulates a graph expressed in the NetJSON format and transforms it
in another NetJSON graph in the block-cut tree shape. Any graph can be transformed in a block-cut tree made
of two kinds of nodes:

• Cut-points: nodes that if removed from the network, will partition the network in two or more components
• Blocks: sub-graphs of the original graph in which the removal of one node will not partition the network.

In the new graph, blocks are compressed in one single node.

1See https://github.com/netCommonsEU/.
2See https://www.netcommons.eu/?q=content/open-source-software.
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netjson robustness is a compact library that transforms a graph into an annotated block-cut tree. Each
cut-point receives an attribute that expresses the fraction of nodes that will be cut from the network if this node
fails. Blocks receive an attribute that expresses their size. These attributes are needed to produce the right
visualization using netjsongraph.js
netjson robustness is the only module developed from scratch for the project, it contains a set of tests
that can be run using the canonical python -m pytest and a python .cfg file as shown in Listing 4.1.
The cfg file makes it possible to upload the file to the Pipy packages repository, which was actually done
using the appropriate Pipy tools3, so that from anywhere the module can installed as easyly as typing “pip
install netjson robustness”.

4.2. Modifications to the netjsongraph.js Module

netjsongraph.js is a Javascript library that takes in input a NetJSON graph and visualizes it in the SVG
format, which can be shown in any recent browser. In order to ease the visualization of the elaborated topology,
we extended the code and we modified the CSS used by default, to clarify the block-cut tree and to change the
kind of information displayed to the user.
Fig. 4.1 and Fig. 4.2 show the final results of the elaboration.
The difference is evident, in the original visualization the network appears flat and the differences among the
nodes are not visible. In the second visualization the blocks are very clearly shown (the blue circles) and make
it evident which part of the topology has more “weight”. The cut-points are instead shown with a gamma of
colors, from pale orange to red which indicates how critical they are, that is, the number of nodes that will be
disconnected from the network if that node fails (the same metric used to express the robustness of the network
in the code used in D2.5). Fig. 4.3 shows that when a node is clicked, the map shows this information.
During the development of the library, OpenWISP2 received attention from another well known community, the
AWMN community of Athens4. The members of AWMN exported the topology of their network in NetJSON
and we were able to produce visualization of their network.
Figs. 4.4 and 4.5 show the original and the block-cut tree visualization of the AWMN network. Apparently, the
AWMN network seems to be more robust than ninux, it has 443 nodes out of which 145 in a single block. We do
not indulge in the analysis of this topology as we did not have time to verify the data, we report this interaction
with AWMN to stress that indeed OpenWISP2 and NetJSON is gathering the interest of communities beyond
ninux.

3See https://pypi.python.org/pypi/netjson robustness/0.1.1.
4See the discussion on https://github.com/netjson/django-netjsongraph/issues/14#issuecomment-315514656.
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Figure 4.1: The standard visualization of the OpenWISP2 platform
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Figure 4.2: The new visualization given by the use of netjson robustness and netjsongraph.js.
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Figure 4.3: Detail of the information displayed when clicking on a cut-point.
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Figure 4.4: The AWMN network.

Figure 4.5: The block-cut tree visualization of the AWMN network.
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4.3. Modification to django-netjsongraph

The developments we described so far were done to some of the single components that make OpenWISP2 but
need to be integrated with the whole platform. django-netjsongraph is the component of OpenWISP2
that takes care of loading a topology, and embeds netjsongraph.js which will visualize it. The modifica-
tions we did to django-netjsongraph are substantial, even if the final result to the user is the addition of
a single button to the interface, shown in Fig. 4.6.

Figure 4.6: Integration of the different visualization in OpenWISP2

Fig. 4.6 shows the user interface that OpenWISP2 presents to the user when visualizing the topology. This
is the typical topology we already are familiar with, and a small calendar that can be used to pick from the
database of saved snapshots, one snapshot that the user wants to see. Our modification resides in the addition
of a radio-button below the calendar with which the user can choose if the graph to display will be the normal
one or the one in block-cut tree format.
Albeit this may seem a minimal modification, it required work to modify some of the components of
django-netjsongraph. In fact, now django-netjsongraph depends on netjson robustness
for the elaboration of the graph from the normal one to the block-cut tree. If the network is large this may
require an amount of time that is not compatible with the usability of a web platform (seconds). Since this
transformation can not be done on the fly, we had to change the model of OpenWISP2, implementing an ex-
tension to the database to periodically save visualizations of the topology together with the snapshots. The
structure of Django, albeit it requires a large effort to be understood and to take practice with it, afterwords
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it helps to to integrate our modification in OpenWISP2 in a reasonable time with small modifications to the
original code. For the time being, since we have only one possible visualization, we used a radiobutton in the
user interface. In the future, if further visualizations will be made, this will be changed to a drop-down menu.
Note that, given the current architecture of the code, new visualizations are really easy to produce. The needed
steps are the following ones:

• Modify the netjson robustness module in order to produce a new variant of the graph, and save it
in NetJSON format in the database as a new visualization;

• Eventually modify netjsongraph.js to optimize the CSS for the new view. The CSS is chosen at
runtime;

• Add the new visualization to the OpenWISP2 controller.
These easy steps can be done when new features are added to OpenWISP2. For instance, now the multi-tenancy
feature is only roughly implemented. In the future, a user will be able to log-in, add to the manager their own
node and assign it to a node in the topology (which is periodically downloaded from one of the nodes that
is controlled by OpenWISP2). When this feature will be done, it will be possible to visualize also a graph
annotated with the owner robustness metric that was introduce in D2.5.
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5. Impact on the ninux Community
Several actions, and interactions, were undertaken during the course of T2.4 in order to share the results with
the ninux community, which was our principal partner for the development of the monitoring tools and for their
application. Among them, we mention the participation of Leonardo Maccari to two ninux-day events (the
aperiodic meeting of the ninux community) and the continuous interactions with at least three ninux islands,
the island of Rome (in particular with Federico Capoano, the maintainer of OpenWISP2), Florence, and ninux
Calabria. This latter interaction is more related to WP4, as they were interested mostly in the legal implications
and it is documented in more detail in Deliverable D4.2 [5].
The interaction with netCommons materialized in several ways, testified by the letter of appreciations that we
attach to this report in Appendix B. In particular:

• The interactions with Federico Capoano led to the developments we documented in the report, and helped
him and the OpenWISP2 community to adopt new features and gain visibility. Moreover, the continuous
interactions with Leonardo Maccari helped to shape two project proposals for the expansion of the NetJ-
SON ecosystem. Albeit these proposals were not financed, the interactions with opened the way for the
OpenWISP2 maintainer to try new forms of funding in order to make OpenWISP2 sustainable.

• The interactions with the ninux community in Florence led to the adoption of the OpenWISP2 platform to
monitor the network, and again, to a project proposal submitted to the RIPE community project grants1.
The ninux community of Florence recognized the need to broaden the participation to the group and
to include different people, in order to make the network less hierarchical. This was motivated by the
fragility observed in the network and in the community. The project submitted (and currently under
evaluation) deals with two themes, one of which is the development of modules for OpenWISP2 that
will ease the interaction among people and the horizontal participation to improve the sustainability of
the network and the community. Interestingly, the ninux community of Florence, in order to broaden its
chances of success decided to include in the project proposal also the Associazione Ricreativa e Culturale
Italiana (ARCI), the largest Italian Non-Governmental Organization (NGO)2. ARCI works in the field of
social inclusion, and can help ninux in several ways, from practical issues (making spaces available for
new nodes) to diversifying the people participating to the community.

The two letters of appreciation that we include in Appendix B are one from Federico Capoano, and one from
ninux Florence, undersigned by one person from ninux and one from ARCI. Besides the appreciation brought
by the letter, it is clear from the discussion in this deliverable that the interaction with netCommons, which
represent a more structured and mature way of locating CNs into society and inform communities (in this
case ninux) themselves on a different perspective of the work they are doing and its consequences and potential
impact, can easily spawn a course of action that can make CNs more aware of what they actually are (monitoring
and measuring with a scientific approach the characteristics of the network), and thus take measure or counter-
measures to change some of their habits and behaviors toward a more sustainable structure.

1RIPE stands for “Réseaux IP Européens” and is the European body for the assignment of IP addresses, see
https://www.ripe.net/support/cpf

2See www.arci.it.

D2.7: Monitoring CNs 31



6. Conclusions
This reports concludes the work of T2.4 on the development of open source instruments to monitor the sus-
tainability of a community network. Part of this work resided in the definition of multi-layer metrics that can
help to spot points of failure in the network graph and in the social network graph of a CN. This work produced
publications and enabled the second part of the work, which was to translate this research into usable code for
the community to monitor their evolution.
In this second phase, a decision was taken to prefer direct and long-term impact over the production of im-
mediate research results. In a way, it would have been much easier to continue with the research work started
with D2.5, enlarge the monitoring period, update the data-set and make everything converge in a home-brew
web application showing all the data in a friendly way. This choice would have been short-sighted as such
stand-alone platform would have had little chances of staying up-to-date with the evolution of the CN. As an
example, the communication tools that the community use change with time, the ninux mailing list in the last
year was substantially abandoned in favour of a few Telegram chats, that today carry the large majority of the
conversations. If we had insisted with a custom instrument to visualize the results of our research done in D2.5,
at the time of writing, this tool would already be outdated.
Instead, we chose a different path, less rewarding in terms of research results but more rewarding in terms of
impact on the community. We chose to adapt our methods to a promising instrument that the community is
developing, even if right now this instrument is not stable, even if it required an amount of work that is not
scientifically productive and even if we can not implement all the features in this platform. The advantage is
that OpenWISP2, due to strong effort in the standardization of its components, plays the role of an abstraction
layer, on top of which we can place visualizations of our custom metrics computed of the data models. As
a consequence the software that we produced will not become abandonware as soon as the project ends, and
using our modular design it will be easy to add new features.
It is in the interest of this task to keep monitoring the development of OpenWISP2 and help introducing new
features even after the end of T2.4. These new features will be mirrored in the Github repositories of the project
and eventually documented on a small update of this deliverable to be published on the project website.
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A. Spatial Separation
The spatial separation metrics were partly modified from their original definition in [17] due to the different
context in which we use them. The first modification is due to the fact that CNs are not tree-shaped but they
are undirected graphs (a functional Wi-Fi link must be able to transmit in both directions, so there is no need
to use directed edges to represent the network graph, albeit, link performance can be asymmetric). As such, in
the ninux graph there is no root node that is naturally identifiable. We repeated the measures with three choices
for the root node, selecting the node that maximises the following metrics: closeness centrality, betweenness
centrality, and eccentricity. All the choices yield qualitatively similar results even if they identify different root
nodes. Results are reported in Tab. A.1.

level s
l

(eccentricity) s
l

(closeness) s
l

(betweenness)

0 - - -
1 - 0.93 -
2 0.93 0.86 0.93
3 0.95 0.99 0.95
4 0.90 0.88 0.90
5 1.00 - 1.00
6 0.80 0.99 0.80
7 - - 1.0

Table A.1: Average separation within each level with various choices of root node. Dash means that there are
less than 2 zones in the level.

The second difference is in the definition of Eq. (2.1). In a tree v
i

has by definition only a neighbor with a lower
level (its parent in the tree) and all the other neighbors have a higher level (its descendants in the tree). In a
graph, among the neighbors there can be also nodes with the same level, and it is important to consider these
links, or else separation is artificially increased. Thus we modified 2.1 as follows:

N 0(i) = {v
j

| v
j

2 N(i) ^ l(v
j

)  l(v
i

)}. (A.1)

Finally, we modified the original definition of the influence zone in order to better reflect the behaviour of a CN.
In the original definition the zone for node i is defined as “the circle centered on the barycenter of i’s neighbours
that belong to the next level, of radius the maximum distance between the barycenter and those points”[17].
As we said, in CN long links are realized with directional antennas, thus, there is not a well-defined concept or
“radius” of the influence zone. Consider Fig. A.1 in which the node for which we compute the interest zone is
the red one (v

i

), and the yellow nodes are the nodes in N 0(i). The dashed circle is the influence zone as per the
original definition, and the dotted polygon is the hull envelop of the points. The area marked with the letter B
and C are areas for which there is no assurance that v

i

has any coverage, since there is potentially no antenna
pointed in their direction. Area A extends beyond an existing node, and in that direction the line of sight may be
obstructed by obstacles. Consequently, for its application to CNs, the convex hull of the area including N 0(i)
is a more realistic choice than the original definition.
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A

BC
Figure A.1: An example definition of influence zone.
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B. Appreciation Letters
The letters reported here testify the two long-listing interactions between ninux and netCommons researchers.
The first one relates to the development of OpenWISP2, while the second one to the adoption of OpenWISP2
and active monitoring tools in the Florence island of ninux.
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